
Flood RoutingFlood Routing
• Simulate the movement of water through a channel
• Used to predict the magnitudes, volumes, and 

temporal patterns of the flow (often a flood wave) 
as it translates down a channel.

• 2 types of routing : hydrologic  and hydraulic.
• both of these methods use some form of the 

continuity equation.
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Continuity EquationContinuity Equation
•The change in storage (dS) equals the difference 
between inflow (I) and outflow (O) or :

O - I = 
dt
dS

•For open channel flow, the continuity equation 
is also often written as :

q = 
x
Q + 

t
A





 A = the cross-sectional area, 

Q = channel flow, and 
q = lateral inflow
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Hydrologic RoutingHydrologic Routing
• Methods combine the continuity equation with some 

relationship between storage, outflow, and possibly 
inflow.

• These relationships are usually assumed, empirical, 
or analytical in nature.  

• An of example of such a relationship might be a 
stage-discharge relationship.
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Use of Manning EquationUse of Manning Equation
• Stage is also related to the outflow via a relationship 

such as Manning's equation
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Hydraulic RoutingHydraulic Routing

• Hydraulic routing methods combine the 
continuity equation with some more physical 
relationship describing the actual physics of 
the movement of the water.

• The momentum equation is the common 
relationship employed.

• In hydraulic routing analysis, it is intended 
that the dynamics of the water or flood wave 
movement be more accurately described
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Momentum EquationMomentum Equation
• Expressed by considering the external forces acting on a 

control section of water as it moves down a channel
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• Henderson (1966) expressed the momentum equation as :
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Combinations of EquationsCombinations of Equations
• Simplified Versions :
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Routing MethodsRouting Methods
• Modified Puls
• Kinematic Wave
• Muskingum
• Muskingum-Cunge
• Dynamic
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Modified Modified PulsPuls

• The modified puls routing method is 
probably most often applied to reservoir 
routing

• The method may also be applied to river 
routing for certain channel situations.

• The modified puls method is also referred 
to as the storage-indication method.

• The heart of the modified puls equation is 
found by considering the finite difference 
form of the continuity equation.
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Modified Modified PulsPuls

t
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Rewritten

•The solution to the modified puls method is accomplished by 
developing a graph (or table) of O -vs- [2S/Δt + O].  In order 
to do this, a stage-discharge-storage relationship must be 
known, assumed, or derived. 
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Modified Modified PulsPuls ExampleExample

•Given the following hydrograph and the 2S/t + O curve, find the 
outflow hydrograph for the reservoir assuming it to be completely full at 
the beginning of the storm.
•The following hydrograph is given:

Hydrograph For Modified Puls Example
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Modified Modified PulsPuls ExampleExample

2S/t + O curve for Modified Puls 
example
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•The following 2S/t + O curve is also given:



MuskingumMuskingum MethodMethod

Sp = K O

Sw = K(I - O)X

Prism Storage

Wedge Storage

CombinedS = K[XI + (1-X)O]
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Muskingum,Muskingum, cont...cont...

O2 = C0 I2 + C1 I1 + C2 O1

Substitute storage equation, S into the “S” in 
the continuity equation yields :

S = K[XI + (1-X)O] O - I = 
dt
dS

t0.5 + Kx - K
t0.5 - Kx - = C0 


t0.5 + Kx - K

t0.5 + Kx = C1 


t0.5 + Kx - K
t0.5 - Kx - K = C2 


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Muskingum Notes :Muskingum Notes :
• The method assumes a single stage-discharge 

relationship.
• In other words, for any given discharge, Q, 

there can be only one stage height.
• This assumption may not be entirely valid for 

certain flow situations. 
• For instance, the friction slope on the rising 

side of a hydrograph for a given flow, Q, may 
be quite different than for the recession side of 
the hydrograph for the same given flow, Q.

• This causes an effect known as hysteresis, 
which can introduce errors into the storage 
assumptions of this method.
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Estimating KEstimating K

• K is estimated to be the travel time 
through the reach.  

• This may pose somewhat of a difficulty, 
as the travel time will obviously change 
with flow.  

• The question may arise as to whether 
the travel time should be estimated 
using the average flow, the peak flow, 
or some other flow.  

• The travel time may be estimated using 
the kinematic travel time or a travel time 
based on Manning's equation.
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Estimating XEstimating X
• The value of X must be between 0.0 and 0.5.  
• The parameter X may be thought of as a weighting 

coefficient for inflow and outflow.  
• As inflow becomes less important, the value of X decreases.  
• The lower limit of X is 0.0 and this would be indicative of a 

situation where inflow, I, has little or no effect on the storage.  
• A reservoir is an example of this situation and it should be 

noted that attenuation would be the dominant process 
compared to translation.  

• Values of X = 0.2 to 0.3 are the most common for natural 
streams; however, values of  0.4 to 0.5 may be calibrated for 
streams with little or no flood plains or storage effects.  

• A value of X = 0.5 would represent equal weighting between 
inflow and outflow and would produce translation with little 
or no attenuation.
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Did you know?

Lag and K is a special case of 
Muskingum -> X=0!



More Notes More Notes -- MuskingumMuskingum
• The Handbook of Hydrology (Maidment, 1992) 

includes additional cautions or limitations in the 
Muskingum method.  

• The method may produce negative flows in the 
initial portion of the hydrograph.  

• Additionally, it is recommended that the method 
be limited to moderate to slow rising 
hydrographs being routed through mild to steep 
sloping channels. 

• The method is not applicable to steeply rising 
hydrographs such as dam breaks.  

• Finally, this method also neglects variable 
backwater effects such as downstream dams, 
constrictions, bridges, and tidal influences.
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Muskingum Example ProblemMuskingum Example Problem

Time Inflow C0I2 C1I1 C2O1 Outflow
0 3 3
1 5
2 10
3 8
4 6
5 5

•A portion of the inflow hydrograph to a reach of channel is given 
below.  If the travel time is K=1 unit and the weighting factor is 
X=0.30, then find the outflow from the reach for the period shown 
below:



Muskingum Example ProblemMuskingum Example Problem

•The first step is to determine the coefficients in this problem.
•The calculations for each of the coefficients is given below:

t0.5 + Kx - K
t0.5 - Kx - = C0 



C0= - ((1*0.30) - (0.5*1)) / ((1-(1*0.30) + (0.5*1)) = 0.167

t0.5 + Kx - K
t0.5 + Kx = C1 



C1= ((1*0.30) + (0.5*1)) / ((1-(1*0.30) + (0.5*1)) = 0.667



Muskingum Example ProblemMuskingum Example Problem

C2= (1- (1*0.30) - (0.5*1)) / ((1-(1*0.30) + (0.5*1)) = 0.167

t0.5 + Kx - K
t0.5 - Kx - K = C2 



Therefore the coefficients in this problem are:
•C0 = 0.167
•C1 = 0.667
•C2 = 0.167



Muskingum Example ProblemMuskingum Example Problem

Time Inflow C0I2 C1I1 C2O1 Outflow
0 3 0.835 2.00 0.501 3
1 5
2 10
3 8
4 6
5 5

•The three columns now can be calculated.
•C0I2 = 0.167 * 5 = 0.835
•C1I1 = 0.667 * 3 = 2.00
•C2O1 = 0.167 * 3 = 0.501



Muskingum Example ProblemMuskingum Example Problem

•Next the three columns are added to determine the outflow at time 
equal 1 hour.

•0.835 + 2.00 + 0.501 = 3.34

Time Inflow C0I2 C1I1 C2O1 Outflow
0 3 0.835 2.00 0.501 3
1 5 3.34
2 10
3 8
4 6
5 5



Muskingum Example ProblemMuskingum Example Problem

•This can be repeated until the table is complete and the outflow at 
each time step is known.

Time Inflow C0I2 C1I1 C2O1 Outflow
0 3 0.835 2.00 0.501 3
1 5 1.67 3.34 0.557 3.34
2 10 1.34 6.67 0.93 5.57
3 8 1.00 5.34 1.49 8.94
4 6 0.835 4.00 1.31 7.83
5 5 3.34 1.03 6.14



Muskingum Example - Tenkiller

Look at R-5



Full Dynamic Wave EquationsFull Dynamic Wave Equations
• The solution of the St. Venant equations is known as 

dynamic routing. 
• Dynamic routing is generally the standard to which 

other methods are measured or compared. 
• The solution of the St. Venant equations is generally 

accomplished via one of two methods : 1) the method 
of characteristics and 2) direct methods (implicit and 
explicit).  

• It may be fair to say that regardless of the method of 
solution, a computer is absolutely necessary as the 
solutions are quite time consuming.  

• J. J. Stoker (1953, 1957) is generally credited for 
initially attempting to solve the St. Venant equations 
using a high speed computer.
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Dynamic Wave SolutionsDynamic Wave Solutions
• Characteristics, Explicit, & Implicit
• The most popular method of applying the 

implicit technique is to use a four point 
weighted finite difference scheme.  

• Some computer programs utilize a finite 
element solution technique; however, these tend 
to be more complex in nature and thus a finite 
difference technique is most often employed.  

• It should be noted that most of the models using 
the finite difference technique are one-
dimensional and that two and three-dimensional 
solution schemes often revert to a finite element 
solution.
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Dynamic Wave SolutionsDynamic Wave Solutions
• Dynamic routing allows for a higher degree of 

accuracy when modeling flood situations because 
it includes parameters that other methods neglect.

• Dynamic routing, when compared to other 
modeling techniques, relies less on previous flood 
data and more on the physical properties of the 
storm.  This is extremely important when record 
rainfalls occur or other extreme events.

• Dynamic routing also provides more hydraulic 
information about the event, which can be used to 
determine the transportation of sediment along the 
waterway.
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Courant Condition?Courant Condition?
• If the wave or hydrograph can travel through the 

subreach (of length Δx) in a time less than the 
computational interval, Δt, then computational 
instabilities may evolve.

• The condition to satisfy here is known as the Courant 
condition and is expressed as :

c
dx  dt 
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Some Some DISadvantagesDISadvantages
• Geometric simplification - some models are designed to use 

very simplistic representations of the cross-sectional geometry. 
This may be valid for large dam breaks where very large flows 
are encountered and width to depth ratios are large; however, 
this may not be applicable to smaller dam breaks where 
channel geometry would  be more critical.

• Model simulation input requirements - dynamic routing 
techniques generally require boundary conditions at one or 
more locations in the domain, such as the upstream and 
downstream sections.  These boundary conditions may in the 
form of known or constant water surfaces, hydrographs, or 
assumed stage-discharge relationships.

• Stability - As previously noted, the very complex nature of 
these methods often leads to numeric instability.  Also, 
convergence may be a problem in some solution schemes.  For 
these reasons as well as others, there tends to be a stability 
problem in some programs.  Often times it is very difficult to 
obtain a "clean" model run in a cost efficient manner.
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