5. APLICACIONS LINEALS

5.1. Generalitats

Definició 5.1.1: Siguin \(E \) i \(F \) espais vectorials sobre el cos commutatiu \(K \). Direm que \(f \) és una aplicació lineal (o transformació lineal) entre \(E \) i \(F \) si verifica:

1) \(f : E \rightarrow F \), \(f \) és aplicació.
2) \(\forall \vec{x}, \vec{y} \in E \), \(f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y}) \)
3) \(\forall \vec{x} \in E, \forall \lambda \in K \), \(f(\lambda \vec{x}) = \lambda \cdot f(\vec{x}) \)

Exemple 5.1.1:
\[
f : \mathbb{R}^2 \rightarrow \mathbb{R}^3
\]
\[
(x^1, x^2) \mapsto f(x^1, x^2) = (3x^1, x^1 - x^2, x^1 + 2x^2)
\]

Exemple 5.1.2:
\[
f : \mathbb{R}^3 \rightarrow \mathbb{R}^3
\]
\[
(x^1, x^2, x^3) \mapsto f(x^1, x^2, x^3) = (0, x^2, 0)
\]

Proposició 5.1.1: \(\forall f \) aplicació lineal entre \(E \) i \(F \) es verifica:

\[
f(\vec{0}_E) = \vec{0}_F
\]

Demostració:
Només cal utilitzar l’apartat 3) de la definició: \(f(\vec{0}_E) = f(0 \cdot \vec{0}_E) = 0 \cdot f(\vec{0}_E) = \vec{0}_F \).

Definició 5.1.2:

\[
Ker f = \{ \vec{x} | \vec{x} \in E, \; f(\vec{x}) = \vec{0} \}
\]

Definició 5.1.3:

\[
Im f = \{ \vec{y} | \vec{y} \in F, \; \exists \vec{x} \in E, \; f(\vec{x}) = \vec{y} \}
\]

Proposició 5.1.2: \(Ker f \) és subespai vectorial de \(E \), i \(Im f \) és subespai vectorial de \(F \).

Demostració:
a) A partir de la proposició 5.1.1 verifiquem que \(\vec{0}_E \in Ker f \) i \(\vec{0}_F \in Im f \), per tant els dos subconjunts són diferents del conjunt buit.

b1) \(\forall \vec{x}_1, \vec{x}_2 \in Ker f \) \(\forall \lambda \in K \),
\[
f(\vec{x}_1 + \lambda \vec{x}_2) = f(\vec{x}_1) + \lambda f(\vec{x}_2) = \vec{0}_F + \lambda \cdot \vec{0}_F = \vec{0}_F \implies \vec{x}_1 + \lambda \vec{x}_2 \in Ker f
\]
b2) \(\forall \vec{y}_1, \vec{y}_2 \in \text{Im} f, \ \forall \lambda \in \mathbb{K}, \exists \vec{x}_1, \vec{x}_2 \in E, \)

\[\vec{y}_1 + \lambda \vec{y}_2 = f(\vec{x}_1) + \lambda f(\vec{x}_2) = f(\vec{x}_1 + \lambda \vec{x}_2) \implies \vec{y}_1 + \lambda \vec{y}_2 \in \text{Im} f \]

Notacions: Sigui \(f : E \rightarrow F \), aplicació lineal,

- \(f \) és **monomorfisme** \(\iff \) \(f \) és injectiva
- \(f \) és **epimorfisme** \(\iff \) \(f \) és exhaustiva
- \(f \) és **isomorfisme** \(\iff \) \(f \) és bijectiva
- \(f \) és **endomorfisme** \(\iff \) \(E = F \)
- \(f \) és **automorfisme** \(\iff \) \(E = F \) i \(f \) és bijectiva

Proposició 5.1.3: \(f \) és exhaustiva si i només si \(\text{Im} f = F \).

Demostració: és immediata de la definició d’exhaustivitat.

Proposició 5.1.4: \(f \) és injectiva \(\iff \) \(\text{Ker} f = \{ \vec{0} \} \).

Demostració:
\[
\implies \]
Sigui \(\vec{x}_0 \in \text{Ker} f \), llavors \(f(\vec{x}_0) = f(\vec{0}) = \vec{0} \), i al ser \(f \) injectiva, \(\vec{x}_0 = \vec{0} \).

\[
\iff \]
\(\forall \vec{x}_1, \vec{x}_2 \in E, \) tals que \(f(\vec{x}_1) = f(\vec{x}_2) \), podem escriure

\[\vec{0} = f(\vec{x}_1) - f(\vec{x}_2) = f(\vec{x}_1 - \vec{x}_2) \]

Així doncs el vector \(\vec{x} = \vec{x}_1 - \vec{x}_2 \in \text{Ker} f = \{ \vec{0} \} \), i per tant \(\vec{x}_1 = \vec{x}_2 \).

Notació:

\[\mathcal{L}_\mathbb{K}(E; F) = \{ f \mid f : E \rightarrow F, \text{ aplicació lineal} \} \]

Proposició 5.1.5: Si considerem la suma d’aplicacions i el producte d’un escalar per una aplicació, es verifica que \((\mathcal{L}_\mathbb{K}(E; F), +, \cdot) \) té estructura de \(\mathbb{K} \) espai vectorial.

Demostració: Només cal demostrar que les operacions estan ben definides i ens queda un cas particular del que ja s’ha demostrat en el tema d’espais vectorials. (poder clicar referència)

Proposició 5.1.6: Suposem que \(\text{dim}_\mathbb{K} E_n = n < +\infty \), sigui \(f \in \mathcal{L}_\mathbb{K}(E; F) \) i \(B = \{ \vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n \} \) una base de \(E_n \), llavors \(f \) queda caracteritzada per les imatges dels vectors de la base, \(\{ f(\vec{e}_1), f(\vec{e}_2), \ldots, f(\vec{e}_n) \} \).

Demostració:
Efectivament, \(\forall \vec{x} \in E_n \) podrem calcular \(f(\vec{x}) \),

\[\forall \vec{x} \in E_n, \ \exists! x^1, x^2, \ldots, x^n \in \mathbb{K}, \ \vec{x} = \sum_{i=1}^{n} x^i \vec{e}_i, \ \vec{f}(\vec{x}) = x^1 f(\vec{e}_1) + x^2 f(\vec{e}_2) + \ldots + x^n f(\vec{e}_n) \]

Proposició 5.1.7: En les condicions anteriors tenim que \(\{ f(\vec{e}_1), f(\vec{e}_2), \ldots, f(\vec{e}_n) \} \) és sistema de generadors de \(\text{Im} f \).

Demostració: Efectivament, \(\forall \vec{y} \in \text{Im} f, \exists \vec{x} \in E_n, \ \vec{y} = f(\vec{x}) \)
\[\bar{x} = x^1 \bar{e}_1 + x^2 \bar{e}_2 + \ldots + x^n \bar{e}_n, \quad \bar{y} = x^1 f(\bar{e}_1) + x^2 f(\bar{e}_2) + \ldots + x^n f(\bar{e}_n) \]

Corol·lari 5.1.1:

\[\text{Ker} f \subset E_n \implies \dim \text{Ker} f = \eta(f) \leq n < +\infty \]
\[\dim \text{Im} f = \text{rank} f = r(f) \leq n < +\infty \]

Teorema 5.1.1: \(\forall f \in L_K(E; F), \quad \dim_K E = n < +\infty, \quad f : E \rightarrow F, \)

\[\dim_K \text{Im} f + \dim_K \text{Ker} f = \dim_K E \]

Notació:

\[r(f) + \eta(f) = n \]

Demostració: Sigui \(B = \{\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_n\} \) una base de \(E \). Considerarem per separat dues situacions:

\(a) \) \(\text{Ker} f = \{\bar{0}\} \)

En aquest cas \(\dim_K \text{Ker} f = \eta(f) = 0 \), i per demostrar el teorema només cal justificar que \(r(f) = n \). Sabem que:

\[\text{Im} f = \langle f(\bar{e}_1), f(\bar{e}_2), \ldots, f(\bar{e}_n) \rangle_K \]

Si demostrem que els vectors que generen \(\text{Im} f \) són linealment independents ja quedarà justificat.

\[\forall i = 1, n \quad \forall \alpha_i \in K, \quad \text{tals que} \quad \alpha_1 f(\bar{e}_1) + \alpha_2 f(\bar{e}_2) + \ldots + \alpha_n f(\bar{e}_n) = \bar{0} \]

\[f(\alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \ldots + \alpha_n \bar{e}_n) = \bar{0} \]

\[\alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \ldots + \alpha_n \bar{e}_n \in \text{Ker} f = \{\bar{0}\} \]

\[\alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \ldots + \alpha_n \bar{e}_n = \bar{0} \]

i al ser \(B \) un sistema lliure,

\[\forall i = 1, n \quad \alpha_i = 0 \]

\(b) \) \(\text{Ker} f \neq \{\bar{0}\} \)

Llavors \(\dim_K \text{Ker} f = \eta(f) = p, \quad 1 \leq p \leq n \). Agafem una base de \(\text{Ker} f, \quad \{\bar{v}_1, \bar{v}_2, \ldots, \bar{v}_p\} \), i la completem fins obtenir una base de tot l’espai \(E_n, \quad B = \{\bar{v}_1, \bar{v}_2, \ldots, \bar{v}_p, \bar{w}_{p+1}, \ldots, \bar{w}_n\} \)

\[\text{Im} f = \langle f(\bar{v}_1), f(\bar{v}_2), \ldots, f(\bar{v}_p), f(\bar{w}_{p+1}), \ldots, f(\bar{w}_n) \rangle_K \]

però les imatges dels \(p \) primers vectors són zero,

\[\text{Im} f = \langle f(\bar{w}_{p+1}), \ldots, f(\bar{w}_n) \rangle_K \]

Per tant, el subespai \(\text{Im} f \) està generat per \(n - p \) vectors. Si demostrem que constitueixen un sistema de vectors linealment independents, tindrem que \(r(f) = n - p \) i el teorema quedarà justificat.

\[\forall i = p + 1, n \quad \forall \alpha_i \in K, \quad \text{tals que} \quad \alpha_{p+1} f(\bar{w}_{p+1}) + \alpha_{p+2} f(\bar{w}_{p+2}) + \ldots + \alpha_n f(\bar{w}_n) = \bar{0} \]

\[f(\alpha_{p+1} \bar{w}_{p+1} + \alpha_{p+2} \bar{w}_{p+2} + \ldots + \alpha_n \bar{w}_n) = \bar{0} \]

això implica que

\[\alpha_{p+1} \bar{w}_{p+1} + \alpha_{p+2} \bar{w}_{p+2} + \ldots + \alpha_n \bar{w}_n \in \text{Ker} f \]
i per tant serà combinació lineal dels vectors de la base de $\text{Ker } f$,

$$
\forall i = 1, p \quad \exists \beta_i \in \mathbb{K}, \quad \alpha_{p+1} \bar{w}_{p+1} + \alpha_{p+2} \bar{w}_{p+2} + \ldots + \alpha_n \bar{w}_n = \beta_1 \bar{v}_1 + \beta_2 \bar{v}_2 + \ldots + \beta_p \bar{v}_p
$$

$$
\beta_1 \bar{v}_1 + \beta_2 \bar{v}_2 + \ldots + \beta_p \bar{v}_p - \alpha_{p+1} \bar{w}_{p+1} - \alpha_{p+2} \bar{w}_{p+2} - \ldots - \alpha_n \bar{w}_n = \bar{0}
$$

però com aquests vectors són base de E_n,

$$
\beta_1 = \beta_2 = \ldots = \beta_p = \alpha_{p+1} = \alpha_{p+2} = \ldots = \alpha_n = 0
$$

Corol·lari 5.1.2: Sigui $f \in L_{\mathbb{K}}(E_n; F)$,

$$
\begin{align*}
\text{a) } f \text{ és monomorfisme} & \iff \text{Ker } f = \{ \bar{0} \} & \iff \eta(f) = 0 & \iff r(f) = n \\
\text{b) } f \text{ és epimorfisme} & \iff \text{Im } f = F & \iff r(f) = \dim_{\mathbb{K}} F \leq n \\
\text{c) } f \text{ és isomorfisme} & \iff r(f) = \dim_{\mathbb{K}} F = \dim_{\mathbb{K}} E_n = n
\end{align*}
$$

Proposició 5.1.8: Sigui $f \in L_{\mathbb{K}}(E; F_m)$, $\dim_{\mathbb{K}} F_m = m < +\infty$ i f és isomorfisme, llavors:

$$
\dim_{\mathbb{K}} E = \dim_{\mathbb{K}} F_m = m
$$

Demostració:

Per ser exhaustiva, $\text{Im } f = F_m$. Considerem una base de F_m, $\{ \bar{y}_1, \bar{y}_2, \ldots, \bar{y}_m \}$, com que aquests vectors pertanyen a $\text{Im } f$,

$$
\forall j = 1, m \quad \exists \bar{v}_j \in E, \quad f(\bar{v}_j) = \bar{y}_j
$$

Si ara demostrem que $\{ \bar{v}_1, \bar{v}_2, \ldots, \bar{v}_m \}$ és base de E, la proposició quedarà justificada.

a) constitueixen un sistema lliure,

$$
\forall j = 1, m \quad \forall \alpha_j \in \mathbb{K}, \quad \text{tals que} \quad \alpha_1 \bar{v}_1 + \alpha_2 \bar{v}_2 + \ldots + \alpha_m \bar{v}_m = \bar{0}
$$

$$
\begin{align*}
\text{f(} \alpha_1 \bar{v}_1 + \alpha_2 \bar{v}_2 + \ldots + \alpha_m \bar{v}_m \text{)} & = f(\bar{0}) = \bar{0} \\
\alpha_1 \bar{y}_1 + \alpha_2 \bar{y}_2 + \ldots + \alpha_m \bar{y}_m & = \bar{0}
\end{align*}
$$

però aquests vectors són linealment independents

$$
\alpha_1 = \alpha_2 = \ldots = \alpha_m = 0
$$

b) són sistema de generadors,

$$
\forall \bar{x} \in E, \quad f(\bar{x}) = \bar{y}, \quad \forall j = 1, m \quad \exists \alpha_j \in \mathbb{K}, \quad f(\bar{x}) = \bar{y} = \alpha_1 \bar{y}_1 + \alpha_2 \bar{y}_2 + \ldots + \alpha_m \bar{y}_m
$$

$$
\begin{align*}
f(\bar{x}) & = \alpha_1 f(\bar{v}_1) + \alpha_2 f(\bar{v}_2) + \ldots + \alpha_m f(\bar{v}_m) \\
f(\bar{x}) & = f(\alpha_1 \bar{v}_1 + \alpha_2 \bar{v}_2 + \ldots + \alpha_m \bar{v}_m)
\end{align*}
$$

i al ser f injectiva,

$$
\bar{x} = \alpha_1 \bar{v}_1 + \alpha_2 \bar{v}_2 + \ldots + \alpha_m \bar{v}_m
$$
5.2 Representació d’aplicacions per matrius

Anem a un cas particular important:

\[f : E_n \rightarrow F_m \quad \text{dim}_K E_n = n < +\infty \quad \text{dim}_K F_m = m < +\infty \]

i considerem bases dels espais vectorials,

\[B_E = \{ \vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n \}, \quad B_F = \{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m \} \]

llavors,

\[\forall \vec{x} \in E_n, \quad \forall i = 1, n \quad \exists x^i \in K, \quad \vec{x} = \sum_{i=1}^{n} x^i \vec{e}_i \]

\[\vec{y} = f(\vec{x}) = \sum_{i=1}^{n} x^i f(\vec{e}_i) = \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ji} \vec{v}_j = \sum_{j=1}^{m} (f(\vec{x}))^j \vec{v}_j, \quad a_{ji} \in K \] \[\text{[1]} \]

Definim notacions,

\[[\vec{x}]_{B_E} = \begin{pmatrix} x^1 \\ x^2 \\ \vdots \\ x^n \end{pmatrix} \quad [\vec{y}]_{B_F} = [f(\vec{x})]_{B_F} = \begin{pmatrix} y^1 \\ y^2 \\ \vdots \\ y^m \end{pmatrix} = \begin{pmatrix} (f(\vec{x}))^1 \\ (f(\vec{x}))^2 \\ \vdots \\ (f(\vec{x}))^m \end{pmatrix} \]

i així ho podrem expressar com

\[[f(\vec{x})]_{B_F} = \begin{pmatrix} (f(\vec{x}))^1 \\ (f(\vec{x}))^2 \\ \vdots \\ (f(\vec{x}))^m \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} a_{i1} x^i \\ \sum_{i=1}^{n} a_{i2} x^i \\ \vdots \\ \sum_{i=1}^{n} a_{im} x^i \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x^1 \\ x^2 \\ \vdots \\ x^n \end{pmatrix} \]

Definició 5.2.1: Definim la \textit{matriu associada} a \(f \) en les bases \(B_E \) i \(B_F \), \(f : E_n \rightarrow F_m \),

\[[f]_{B_E B_F} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = A \in M_K(m \times n) \]

\[i \text{ podrem escriure,} \]

\[[f(\vec{x})]_{B_F} = [f]_{B_E B_F} \cdot [\vec{x}]_{B_E} \]

Així doncs, fixades les bases \(B_E \) i \(B_F \) l’aplicació lineal \(f \) queda totalment caracteritzada donant els \(m \cdot n \) coeficients de la matriu associada.

Si ara considerem l’expressió [1] tenim que:

\[\forall i = 1, n \quad f(\vec{e}_i) = \sum_{j=1}^{m} a_{ji} \vec{v}_j \]
que podrem escriure matricialment

\[
[f(\vec{e}_i)]_{B_F} = \begin{pmatrix}
 a_{1i} \\
 a_{2i} \\
 \vdots \\
 a_{mi}
\end{pmatrix}
\]

La columna \(i \) de la matrícula associada a \(f \) en les bases \(B_E \) i \(B_F \) correspon a les components del vector \(f(\vec{e}_i) \) en la base \(B_F \).

Ja sabem que \((L_K(E_n; F_m),+,\cdot) \) és un \(K \) espai vectorial. Ara calcularem la seva dimensió. No ho farem trobant una base, sino definint un isomorfisme entre ell i un altre espai vectorial del qual en coneixem la dimensió, i utilitzant la proposició 4.1.8.

Proposició 5.2.1: Definim l’aplicació:

\[
\Phi_{B_E B_F} : L_K(E_n; F_m) \longrightarrow M_K(m \times n)
\]

\[
f \mapsto \Phi_{B_E B_F}(f) = [f]_{B_E B_F}
\]

llavors \(\Phi_{B_E B_F} \) és isomorfisme, i per tant

\[
dim_K L_K(E_n; F_m) = dim_K M_K(m \times n) = m \cdot n
\]

és a dir:

\[
dim_K L_K(E_n; F_m) = (dim_K E_n) \cdot (dim_K F_m)
\]

Demostració:

a) Comencem verificant que és aplicació lineal,

\[
\forall f, g \in L_K(E_n; F_m), \ \forall \lambda \in K
\]

\[
\Phi_{B_E B_F}(f + \lambda g) = [f + \lambda g]_{B_E B_F} = [f]_{B_E B_F} + \lambda [g]_{B_E B_F} = \Phi_{B_E B_F}(f) + \lambda \Phi_{B_E B_F}(g)
\]

b) Ara demostrarem que és injectiva, justificant que \(\text{Ker} \ \Phi_{B_E B_F} = \{\tilde{0}\} \), on

\[
\tilde{0} : E_n \longrightarrow F_m
\]

\[
\vec{x} \mapsto \tilde{0}(\vec{x}) = \vec{0}
\]

Sigui \(f_o \in \text{Ker} \ \Phi_{B_E B_F} \), llavors

\[
\Phi_{B_E B_F}(f_o) = [0]_{m \times n} \in M_K(m \times n)
\]

de manera que:

\[
\forall \vec{x} \in E_n, \quad [f_o(\vec{x})]_{B_E B_F} = [0]_{m \times n} \cdot [\vec{x}]_{B_E} = [0]_{m \times 1}
\]

del que deduïm que \(f_o = \tilde{0} \).

c) Per justificar que és exhaustiva hem de demostrar que per a qualsevol matrícula \(A \in M_K(m \times n) \) existeix una aplicació lineal \(f \in L_K(E_n; F_m) \) tal que:

\[
\Phi_{B_E B_F}(f) = A
\]
per demostrar aquesta existència només cal donar la imatge d’un vector arbitrari i comprovar que l’aplicació és lineal,
\[\forall \vec{x} \in E_n, \quad [f(\vec{x})]_{B_E} = A \cdot [\vec{x}]_{B_E} \]

5.3 Composició d’aplicacions lineals

Siguin \(E, F, G \), espais vectorials sobre el cos commutatiu \(\mathbb{K} \), i \(f \in L_{\mathbb{K}}(E; F), \quad g \in L_{\mathbb{K}}(F; G) \).
Usant la teoria del capítol 1 sabem que la composició d’aquestes dues aplicacions ens dona una altre aplicació definida entre \(E \) i \(G \), \(h = g \cdot f \) que facilita justificarem que és lineal. Llavors \(h = g \cdot f \in L_{\mathbb{K}}(E; G) \).

Proposició 5.3.1: Siguin \(E, F, G, H \), espais vectorials sobre el cos commutatiu \(\mathbb{K} \),
\[
\forall f, \hat{f} \in L_{\mathbb{K}}(E; F), \quad \forall g, \hat{g} \in L_{\mathbb{K}}(F; G), \quad \forall h \in L_{\mathbb{K}}(G; H), \quad \forall \lambda \in \mathbb{K}
\]
a) \(h \cdot (g \cdot f) = (h \cdot g) \cdot f \) (Associativa)
b) \(\lambda(g \cdot f) = g \cdot (\lambda f) = (\lambda g) \cdot f \).
c) \((g + \hat{g}) \cdot f = g \cdot f + \hat{g} \cdot f \) (Distributiva per la dreta).
d) \(g \cdot (f + \hat{f}) = g \cdot f + g \cdot \hat{f} \) (Distributiva per l’esquerra).

Demostració: és un cas particular de la demostrada en el capítol 1.

Si ara agafem \(E = F = G \) ens queda que la composició o producte d’endomorfismes definits en \(E \) és una operació interna.

Proposició 5.3.2: \((L_{\mathbb{K}}(E; E), +, \cdot) \) té estructura d’anell no commutatiu unitari i amb divisors de zero.

Ja sabem que \((L_{\mathbb{K}}(E; E), +) \) és grup commutatiu i que es verifica la propietat distributiva (cas particular de la proposició anterior).

Anem a veure que existeix element unitari. Si definim:
\[
Id : E \longrightarrow E \quad \vec{x} \mapsto Id(\vec{x}) = \vec{x}, \quad Id \in L_{\mathbb{K}}(E; E)
\]
\[
\forall f \in L_{\mathbb{K}}(E; E), \quad f \cdot Id = Id \cdot f = f
\]
Només ens queda demostrar que existeixen divisors de zero. Hem de poder obtenir
\[
f, g \in L_{\mathbb{K}}(E; E), \quad f \neq 0, \quad g \neq 0, \quad g \cdot f = 0
\]
en aquest cas s’haurà de verificar
\[
\forall \vec{x} \in E, \quad g(f(\vec{x})) = \vec{0}
\]
i això passa si i només si \(Im f \subset Ker g \), i ja tenim una manera de construir-los.

Definició 5.3.1: Sigui \(f \in L_{\mathbb{K}}(E; F) \), direm que \(f \) és **inversible** si existeix \(\hat{f} \) aplicació definida entre \(F \) i \(E \), tal que:
\[
\hat{f} \cdot f = Id_E \quad f \cdot \hat{f} = Id_F
\]
Per la teoria desenvolupada en el capítol 1 sabem que si \(\hat{f} \) existeix, llavors és única i li direm l’aplicació inversa de \(f \), \(\hat{f} = f^{-1} \).
Lema 5.3.1: Sigui \(f \in L_{\mathbb{K}}(E; F) \), si la seva inversa existeix llavors també és lineal, és a dir, \(f^{-1} \in L_{\mathbb{K}}(F; E) \).

Demostració:

\[
\forall \vec{y}_1, \vec{y}_2 \in F, \forall \lambda \in \mathbb{K}, \exists \vec{x}_1, \vec{x}_2 \in E \quad f(\vec{x}_1) = \vec{y}_1, \quad f(\vec{x}_2) = \vec{y}_2, \quad f^{-1}(\vec{y}_1) = \vec{x}_1, \quad f^{-1}(\vec{y}_2) = \vec{x}_2
\]

però \(f \) és aplicació lineal

\[
f^{-1}(\vec{y}_1 + \lambda \vec{y}_2) = f^{-1}(f(\vec{x}_1) + \lambda f(\vec{x}_2))
\]

El problema que ara ens queda pendent és el de determinar què ha de verificar una aplicació lineal per ser inversible. Enunciarem i demostrarem aquesta qüestió per a una aplicació qualsevol no necessàriament lineal.

Proposició 5.3.3: Sigui dos conjunts \(A \) i \(B \), i una certa aplicació \(\phi : A \rightarrow B \)

\(\phi \) és inversible \iff \(\phi \) és bijectiva

Demostració:

\(\iff \)

Si \(\phi \) és bijectiva llavors \(\forall b \in B, \exists a \in A \) tal que \(\phi(a) = b \). Això ens permet definir l’aplicació:

\[\hat{\phi} : B \rightarrow A \]

\[b \mapsto \hat{\phi}(b) = a \]

i ara verifiquem que \(\hat{\phi} = \phi^{-1} \) ja que:

\[\hat{\phi} \cdot \phi = \text{Id}_A, \quad \phi \cdot \hat{\phi} = \text{Id}_B \]

\(\implies \)

Si \(\phi \) és inversible llavors existeix \(\phi^{-1} \), tals que

\[\phi : A \rightarrow B \quad \phi^{-1} : B \rightarrow A \]

\[a : \quad \phi^{-1} \cdot \phi = \text{Id}_A \quad b : \quad \phi \cdot \phi^{-1} = \text{Id}_B \]

Aquí caldrà tenir en compte que l’aplicació identitat és bijectiva i recordar tal com es va demostrar en el capítol 1 que si la composició de dues aplicacions és bijectiva llavors la primera aplicació que actúa és injectiva i la segona exhaustiva. Així doncs de a) deduïm que \(\phi \) és injectiva, i de b) que \(\phi \) és exhaustiva.

Corol·lari 5.3.1: Sigui \(f \in L_{\mathbb{K}}(E; F) \), llavors:

\[f \text{ és inversible } \iff f \text{ és isomorfisme} \]

Definició 5.3.2: Sigui \(E \) un \(\mathbb{K} \) e.v.,

\[GL(E; \mathbb{K}) = \{ f \mid f \in L_{\mathbb{K}}(E; E), f \text{ inversible} \} \]
Proposició 5.3.4: Si ara considerem l’operació composició o producte d’aplicacions, \((GL(E; \mathbb{K}), \cdot)\) té estructura de grup no commutatiu. En direm el **grup lineal** de les aplicacions lineals definides en \(E\).

Proposició 5.3.5: Siguin \(E, F, G, \mathbb{K}\) e.v. de dimensió finita, i \(B_E, B_F, B_G\) bases respectives.

\[
\forall f \in L_{\mathbb{K}}(E; F), \quad \forall g \in L_{\mathbb{K}}(F; G), \quad h = g \cdot f \in L_{\mathbb{K}}(E; G)
\]

\[
[h]_{B_E B_G} = [g \cdot f]_{B_E B_G} = [g]_{B_F B_G} \cdot [f]_{B_E B_F}
\]

Demostració: Suposem \(\dim_{\mathbb{K}} E = n, \quad \dim_{\mathbb{K}} F = m, \quad \dim_{\mathbb{K}} G = p\)

\[
\forall \vec{x} \in E, \quad [(g \cdot f)(\vec{x})]_{B_G} = [g \cdot f]_{B_E B_G} \cdot [\vec{x}]_{B_E} = [g(f(\vec{x}))]_{B_G} = [g]_{B_F B_G} \cdot [f]_{B_E B_F} \cdot [\vec{x}]_{B_E}
\]

Restant i aplicant la propietat distributiva del producte de matrius respecte a la suma,

\[
\{[g \cdot f]_{B_E B_G} - [g]_{B_F B_G} \cdot [f]_{B_E B_F}\} \cdot [\vec{x}]_{B_E} = [0]_{p \times 1}
\]

De manera que si en diem \(A\) a la matriu entre claus, ens queda

\[
\forall \vec{x} \in E, \quad A \cdot [\vec{x}]_{B_E} = [0]_{p \times 1}, \quad A \in M_{\mathbb{K}}(p \times n)
\]

Si aconseguim justificar que la matriu \(A\) és la zero quedarà demostrada la proposició.

Lema 4.3.2: Siguï \(A = [a_{ij}] \in M_{\mathbb{K}}(p \times n)\), tal que

\[
\forall x^1, x^2, \ldots, x^n \in \mathbb{K}, \quad A \cdot \begin{pmatrix} x^1 \\ x^2 \\ \vdots \\ x^n \end{pmatrix} = [0]_{p \times 1} \Rightarrow A = [0]_{p \times n}
\]

Demostració: Al ser cert per a qualsevol vector \(\vec{x}\), en particular ho serà si agafem:

\[
\forall i, j = 1, n \quad x^j = 1, \quad i \neq j, \quad x^i = 0
\]

fent el producte ens quedarà

\[
\forall j = 1, n \quad a_{1j} = a_{2j} = \ldots = a_{pj} = 0 \Rightarrow A = [0]_{p \times n}
\]

Proposició 5.3.6: Siguï \(E, F, \mathbb{K}\) e.v. de dimensió finita i \(B_E, B_F\) bases respectives.

\[
\forall f \in L_{\mathbb{K}}(E; F)\text{ isomorfisme, llavors}
\]

\[
[f^{-1}]_{B_F B_E} = [f]_{B_E B_F}^{-1}
\]

Demostració: Pel corol·lari 5.1.2 c) sabem que si \(f\) és isomorfisme els dos espais vectorials tenen la mateixa dimensió i per tant la matriu associada a \(f\) és quadrada. Aplicant la definició d’aplicació inversa i la proposició anterior

\[
[f^{-1}]_{B_E B_F} = [Id_E]_{B_E B_E} = I_n = [f^{-1}]_{B_F B_E} \cdot [f]_{B_E B_F}
\]
\[[f \cdot f^{-1}]_{B_F B_F} = [Id_F]_{B_F B_F} = I_n = [f]_{B_E B_F} \cdot [f^{-1}]_{B_F B_E} \]

Utilitzant les notacions:

\[C = [f]_{B_E B_F}, \quad D = [f^{-1}]_{B_F B_E} \]

obtenim

\[D \cdot C = I_n \quad C \cdot D = I_n \]

i per tant

\[D = [f^{-1}]_{B_F B_E} = C^{-1} = [f]_{B_E B_F}^{-1} \]

Conclusió: Quan treballem amb espais de dimensió finita la matrícul associada a un isomorfisme és una matrícul invertible, i la seva inversa correspon a la matrícul associada a l’aplicació lineal inversa.

5.4 Canvi de base

5.4.1 Canvi de base en un espai vectorial

Sigui \(E_n \) un \(K \) espai vectorial de dimensió finita, \(\dim_K E_n = n < +\infty \). Signin dues bases d’aquest espai vectorial:

\[V = \{ \vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n \}, \quad N = \{ \vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n \} \]

\[\forall \vec{x} \in E_n \quad \vec{x}_V = (x^1, x^2, \ldots, x^n) \quad \vec{x}_N = (\hat{x}^1, \hat{x}^2, \ldots, \hat{x}^n) \]

Per a un vector qualsevol volem trobar la relació entre les coordenades anteriors. Considerem l’aplicació lineal identitat definida en \(E_n \) agafant de sortida la base \(V \) i d’arribada la \(N \),

\[\text{Id} : E_n \longrightarrow E_n \]

\[\vec{x}_V = (x^1, x^2, \ldots, x^n) \mapsto \vec{x}_N = (\hat{x}^1, \hat{x}^2, \ldots, \hat{x}^n) \]

que podem expressar matricialment com

\[[\text{Id}]_{V N} \cdot [\vec{x}]_V = [\vec{x}]_N \quad A = [a_{ij}] = [\text{Id}]_{V N} \]

on segons la teoria desenvolupada a l’apartat anterior, la columna \(j \) de la matrícul correspon a les coordenades del vector \(\text{Id}(\vec{e}_j) = \vec{e}_j \) en la base \(N \), és a dir

\[\forall j = 1, n \quad [\text{Id}(\vec{e}_j)]_N = [\vec{e}_j]_N = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix} \]

que també podem expressar com combinació lineal

\[\vec{e}_j = a_{1j} \vec{u}_1 + a_{2j} \vec{u}_2 + \ldots + a_{nj} \vec{u}_n = \sum_{i=1}^{n} a_{ij} \vec{u}_i \]

Notació: En direm matrícul de **canvi de base entre** \(V \) i \(N \) a \(A = [\text{Id}]_{V N} \). Aquesta matrícul ens permetrà obtenir a partir de les coordenades d’un vector en la base \(V \) les seves coordenades en la base \(N \),

\[[\text{Id}]_{V N} \cdot [\vec{x}]_V = [\vec{x}]_N, \quad A \cdot [\vec{x}]_V = [\vec{x}]_N \]

\[\begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{pmatrix} \begin{pmatrix} x^1 \\ x^2 \\ \vdots \\ x^n \end{pmatrix} = \begin{pmatrix} \hat{x}^1 \\ \hat{x}^2 \\ \vdots \\ \hat{x}^n \end{pmatrix} \]
\[\forall i = 1, n \quad \hat{x}^i = a_{i1}x^1 + a_{i2}x^2 + \ldots + a_{in}x^n = \sum_{j=1}^{n} a_{ij}x^j \]

Al ser l’aplicació identitat inversible podem aplicar la proposició 5.3.6 el que ens permet afirmar que la seva matriu associada és inversible:

\[[\text{Id}^{-1}]_{NV} = [\text{Id}]_{NV} = [\text{Id}]_{VN}^{-1} \]

Si ara considerem la matriu

\[B = [b_{ij}] = A^{-1} = [\text{Id}]_{VN} \]

les seves columnes ens donen els vectors de la base \(N \) com combinació lineal dels de la base \(V \),

\[\forall j = 1, n \quad [\text{Id}(\vec{u}_j)]_V = [\vec{u}_j]_V = \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{pmatrix} \]

\[\vec{u}_j = b_{1j}\vec{e}_1 + b_{2j}\vec{e}_2 + \ldots + b_{nj}\vec{e}_n = \sum_{i=1}^{n} b_{ij}\vec{e}_i \]

\textbf{Nota:} En direm matriu de \textbf{canvi de base entre} \(N \) i \(V \) a \(B = [\text{Id}]_{NV} \). Aquesta matriu ens permetrà obtenir a partir de les coordenades d’un vector en la base \(N \) les seves coordenades en la base \(V \),

\[[\text{Id}]_{NV} \cdot [\vec{x}]_N = [\vec{x}]_V, \quad B \cdot [\vec{x}]_N = [\vec{x}]_V \]

\[\begin{pmatrix} b_{11} & b_{12} & \ldots & b_{1n} \\ b_{21} & b_{22} & \ldots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{pmatrix} \cdot \begin{pmatrix} \hat{x}^1 \\ \hat{x}^2 \\ \vdots \\ \hat{x}^n \end{pmatrix} = \begin{pmatrix} x^1 \\ x^2 \\ \vdots \\ x^n \end{pmatrix} \]

\[\forall i = 1, n \quad x^i = b_{i1}\hat{x}^1 + b_{i2}\hat{x}^2 + \ldots + b_{in}\hat{x}^n = \sum_{j=1}^{n} b_{ij}\hat{x}^j \]

\subsection*{5.4.2 Canvi de base en una aplicació lineal}

Sigui \(E, F \) \(K \) e.v. de dimensió finita, \(\dim E = n < +\infty, \dim F = m < +\infty \), \(E_N, F_N \) bases de \(E \) i \(V_F, F_V \) bases de \(F \). Considerem una aplicació lineal definida entre aquests espais \(f \in L_K(E; F) \). Podrem treballar amb quatre matrius associades a \(f \), totes elles de \(m \) files i \(n \) columnes

\[[f]_{V_F V_F}, \quad [f]_{E_V N_F}, \quad [f]_{E_V V_V}, \quad [f]_{N_N N_F}, \]

Totes elles ens permeten donat un vector qualsevol de \(E \) trobar la seva imatge en \(F \) però en les bases adequades

\[[f]_{V_F V_F} \cdot [\vec{x}]_V = [f(\vec{x})]_{V_F}, \quad [f]_{V_E N_F} \cdot [\vec{x}]_V = [f(\vec{x})]_{N_F} \]

\[[f]_{N_N V_F} \cdot [\vec{x}]_N = [f(\vec{x})]_{V_F}, \quad [f]_{N_N N_F} \cdot [\vec{x}]_N = [f(\vec{x})]_{N_F} \]

Ara volem trobar la relació entre aquestes quatre matrius. Suposem que coneixem \([f]_{V_F V_F} \) i obtenim les altres.

1) Canvi de base en l’espai de sortida
Tenim:

\[f : E_n \rightarrow F_m \]
\[\vec{x}_{V_E} \mapsto f(\vec{x})_{V_F} \]
\[[f]_{V_EV_F} : [\vec{x}]_{V_E} = [f(\vec{x})]_{V_F} \]

Si ara fem la composició d’aplicacions \(f \cdot Id_E = f \), on en l’aplicació identitat agafem com a base de sortida \(N_E \) i d’arribada \(V_E \), l’aplicació composició \(f \) tindrà com a base de sortida \(N_E \) i d’arribada \(V_F \),

\[f : E_n \xrightarrow{Id_E} E_n \xrightarrow{f} F_m \]
\[\vec{x}_{N_E} \mapsto \vec{x}_{V_E} \mapsto f(\vec{x})_{V_F} \]

matricialment:

\[[f]_{N_EV_F} = [f : Id_E]_{N_EV_F} = [f]_{V_EV_F} \cdot [Id_E]_{N_EV_E} \]

2) Canvi de base en l’espai d’arribada

Tenim:

\[f : E_n \rightarrow F_m \]
\[\vec{x}_{V_E} \mapsto f(\vec{x})_{V_F} \]
\[[f]_{V_EV_F} : [\vec{x}]_{V_E} = [f(\vec{x})]_{V_F} \]

Si ara fem la composició d’aplicacions \(Id_F \cdot f = f \), on en l’aplicació identitat agafem com a base de sortida \(N_F \) i d’arribada \(V_F \), l’aplicació composició \(f \) tindrà com a base de sortida \(V_E \) i d’arribada \(N_F \),

\[f : E_n \xrightarrow{f} F_m \xrightarrow{Id_F} F_m \]
\[\vec{x}_{V_E} \mapsto f(\vec{x})_{V_F} \mapsto f(\vec{x})_{N_F} \]

matricialment:

\[[f]_{V_EN_F} = [Id_F \cdot f]_{V_EN_F} = [Id_F]_{V_NF} \cdot [f]_{V_EV_F} \]

3) Canvi de base en els dos espais

Tenim:

\[f : E_n \rightarrow F_m \]
\[\vec{x}_{V_E} \mapsto f(\vec{x})_{V_F} \]
\[[f]_{V_EV_F} : [\vec{x}]_{V_E} = [f(\vec{x})]_{V_F} \]

Si ara fem la composició d’aplicacions \(Id_F \cdot f : Id_E = f \), on en l’aplicació identitat en \(E \) agafem com a base de sortida \(N_E \) i d’arribada \(V_E \), i en l’aplicació identitat en \(F \), base de sortida \(V_F \) i arribada \(N_F \), l’aplicació composició \(f \) tindrà com a base de sortida \(N_E \) i d’arribada \(N_F \),

\[f : E_n \xrightarrow{Id_E} E_n \xrightarrow{f} F_m \xrightarrow{Id_E} F_m \]
\[\vec{x}_{N_E} \mapsto \vec{x}_{V_E} \mapsto f(\vec{x})_{V_F} \mapsto f(\vec{x})_{N_F} \]
matricialment:

\[
[f]_{N_F N_F} = [Id_F \cdot f \cdot Id_E]_{N_F N_F} = [Id_F]_{N_F N_F} \cdot [f]_{V_F N_F} \cdot [Id_E]_{N_F V_F}
\]

Cas particular: \(E_n = F_m\). Siguin \(V\) i \(N\) dues bases de \(E_n\). Tenim:

\[
\begin{align*}
 f &: E_n \longrightarrow E_n \\
 \bar{x}_V &= f(\bar{x})_V \\
 [f]_{VV} \cdot [\bar{x}]_V &= [f(\bar{x})]_V \\
 [f]_{VV} &\overset{\text{Not.}}{=} [f]_V = A \\
 f &: E_n \longrightarrow E_n \\
 \bar{x}_N &= f(\bar{x})_N \\
 [f]_{NN} \cdot [\bar{x}]_N &= [f(\bar{x})]_N \\
 [f]_{NN} &\overset{\text{Not.}}{=} [f]_N = B
\end{align*}
\]

Si ara volem trobar la relació entre les matrius \(A\) i \(B\) ens quedarà:

\[
[f]_{NN} = [Id \cdot f \cdot Id]_{NN} = [Id]_{VV} \cdot [f]_{VV} \cdot [Id]_{NV}
\]

Tenint en compte les notacions anteriors i el Lema 5.3.6:

\[
[f]_N = [Id \cdot f \cdot Id]_{NN} = [Id]_{VV}^{-1} \cdot [f]_{VV} \cdot [Id]_{NV}
\]

Exemple 5.4.1:

Siguin \(E\) i \(F\) e.v., \(\dim \mathbb{R} E = 3\), \(\dim \mathbb{R} F = 2\), i \(f \in L_\mathbb{R}(E; F)\).

Considerem dues bases de \(E\):

\[
V_E = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}, \quad N_E = \{\bar{u}_1, \bar{u}_2, \bar{u}_3\}
\]

\(\forall \bar{x} \in E, \quad \bar{x}_E = (x^1, x^2, x^3) \quad \bar{x}_N = (\bar{x}^1, \bar{x}^2, \bar{x}^3)\)

i dues bases de \(F\):

\[
V_F = \{\bar{v}_1, \bar{v}_2\}, \quad N_F = \{\bar{w}_1, \bar{w}_2\}
\]

\(\forall \bar{y} \in F, \quad \bar{y}_{V_F} = (y^1, y^2) \quad \bar{y}_{N_F} = (\bar{y}^1, \bar{y}^2)\)

Ens donen les relacions següents:

\[
\begin{align*}
\bar{u}_1 &= 2\bar{e}_1 - 2\bar{e}_2 \\
\bar{u}_2 &= \bar{e}_1 + \bar{e}_2 - \bar{e}_3 \\
\bar{u}_3 &= -3\bar{e}_1 + \bar{e}_2 - \bar{e}_3 \\
\bar{y}^1 &= 3y^1 + 2y^2 \\
\bar{y}^2 &= y^1 - y^2
\end{align*}
\]

(1)
La segona matriu ens permet expressar les coordenades en la base V i també coneixem les relacions entre coordenades:

Llavors ja podem identificar la matriu de canvi de base:

$$N_{matriu de canvi de base de V}$$

Es demana totes les matrius de canvi de base i les quatre matrius associades a f.

1) Escribint en columnes les coordenades dels vectors de la base N_E donades en (1) aconseguim la matriu de canvi de base de N_E a V_E:

$$[IdE]_{N_EV_E} = \begin{pmatrix} 2 & 1 & -3 \\ -2 & 1 & 1 \\ 0 & -1 & -1 \end{pmatrix} \quad [IdE]_{V_EN_E} = [IdE]_{N_EV_E}^{-1} = \frac{1}{4} \begin{pmatrix} 0 & -2 & -2 \\ 1 & 1 & -2 \\ -1 & -1 & -2 \end{pmatrix}$$

La segona matriu ens permet expressar els vectors de la base V_E com combinació lineal dels de N_E:

$$\begin{align*}
\vec{e}_1 &= \frac{1}{4} \vec{u}_2 - \frac{1}{4} \vec{u}_3 \\
\vec{e}_2 &= -\frac{1}{2} \vec{u}_1 + \frac{1}{4} \vec{u}_2 - \frac{1}{4} \vec{u}_3 \\
\vec{e}_3 &= -\frac{1}{2} \vec{u}_1 - \frac{1}{2} \vec{u}_2 - \frac{1}{2} \vec{u}_3
\end{align*}$$

i també coneixem les relacions entre coordenades:

$$\begin{align*}
[IdE]_{N_EV_E} \cdot [\vec{x}]_{N_E} &= [\vec{x}]_{V_E} = \frac{1}{4} \begin{pmatrix} 0 & -2 & -2 \\ 1 & 1 & -2 \\ -1 & -1 & -2 \end{pmatrix} \cdot \begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} = \begin{pmatrix} \hat{x}^1 \\ \hat{x}^2 \\ \hat{x}^3 \end{pmatrix} \\
\hat{x}^1 &= 2x^1 + \hat{x}^2 - 3\hat{x}^3 \\
\hat{x}^2 &= -2\hat{x}^1 + \hat{x}^2 + \hat{x}^3 \\
\hat{x}^3 &= -\hat{x}^2 - \hat{x}^3 \\
[IdE]_{V_EN_E} \cdot [\vec{x}]_{V_E} &= [\vec{x}]_{N_E} = \frac{1}{4} \begin{pmatrix} 0 & -2 & -2 \\ 1 & 1 & -2 \\ -1 & -1 & -2 \end{pmatrix} \cdot \begin{pmatrix} \hat{x}^1 \\ \hat{x}^2 \\ \hat{x}^3 \end{pmatrix} = \begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} \\
x^1 &= \frac{1}{2} \hat{x}^1 - \frac{1}{2} \hat{x}^2 \\
x^2 &= \frac{1}{4} \hat{x}^1 + \frac{1}{4} \hat{x}^2 - \frac{1}{2} \hat{x}^3 \\
x^3 &= \frac{1}{4} \hat{x}^1 - \frac{1}{4} \hat{x}^2 - \frac{1}{2} \hat{x}^3
\end{align*}$$

Si ara escribim matricialment les expressions (2):

$$\begin{pmatrix} 3 & 2 & 1 \\ 1 & -3 \end{pmatrix} \cdot \begin{pmatrix} y^1 \\ y^2 \end{pmatrix} = \begin{pmatrix} \tilde{y}^1 \\ \tilde{y}^2 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 1 & -3 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}_v \\ \tilde{y}_N \end{pmatrix}$$

Llevors ja podem identificar la matriu de canvi de base:

$$[IdF]_{V_FN_F} = \frac{1}{5} \begin{pmatrix} 3 & 2 \\ 1 & -3 \end{pmatrix} \quad [IdF]_{N_FN_F} = [IdF]_{V_FN_F}^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix}$$

La segona matriu ens permet expressar les coordenades en la base V_F en funció de les coordenades en N_F:

$$\begin{pmatrix} 1 \\ 5 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix} \cdot \begin{pmatrix} \tilde{y}^1 \\ \tilde{y}^2 \end{pmatrix} = \begin{pmatrix} y^1 \\ y^2 \end{pmatrix}$$

$$y^1 = \frac{1}{5} \tilde{y}^1 + \frac{2}{5} \tilde{y}^2$$

$$y^2 = \frac{1}{5} \tilde{y}^1 - \frac{3}{5} \tilde{y}^2$$
També podem expressar els vectors d’una base com combinació lineal dels de l’altra:

\[
[I_d_F]_{V_F N_F} = \begin{pmatrix} 3 & 2 \\ 1 & -3 \end{pmatrix}, \quad \vec{v}_1 = 3\vec{w}_1 + \vec{w}_2, \\
\quad \vec{v}_2 = 2\vec{w}_1 - \vec{w}_2
\]

\[
[I_d_F]_{N_F V_F} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix}, \quad \vec{w}_1 = \frac{1}{5}\vec{v}_1 + \frac{1}{5}\vec{v}_2, \\
\quad \vec{w}_2 = \frac{2}{5}\vec{v}_1 - \frac{3}{5}\vec{v}_2
\]

2) Ara ens queda calcular les matrius associades a \(f \) en les diferents bases. Recordem la definició:

\[
f : E \longrightarrow F
\]

\[
\forall \vec{x} \in E, \quad f(x^1, x^2, x^3) = (x^1 + 2x^2 + x^3)\vec{v}_1 + (4x^1 - 5x^2 - x^3)\vec{w}_2
\]

Així doncs el vector imatge ve donat en la base \(N_F \),

\[
[f(\vec{x})]_{N_F} = \begin{pmatrix} x^1 + 2x^2 + x^3 \\ 4x^1 - 5x^2 - x^3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 4 & -5 & -1 \end{pmatrix} \cdot \begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} = [f]_{V_E N_F} \cdot [\vec{x}]_{V_E}
\]

per tant,

\[
[f]_{V_E N_F} = \begin{pmatrix} 1 & 2 & 1 \\ 4 & -5 & -1 \end{pmatrix}
\]

\[
[f]_{V_E V_F} = [I_d_F]_{N_F V_F} \cdot [f]_{V_E N_F} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ 1 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 1 \\ 4 & -5 & -1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 9 & -8 & -1 \\ -11 & 17 & 4 \end{pmatrix}
\]

\[
[f]_{N_E V_F} = [f]_{V_E V_F} \cdot [I_d_E]_{N_E V_E} = \frac{1}{5} \begin{pmatrix} 9 & -8 & -1 \\ -11 & 17 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & -3 \\ -2 & 1 & 1 \\ 0 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 34 & 2 & -34 \\ -56 & 2 & 46 \end{pmatrix}
\]

\[
[f]_{N_E N_F} = [f]_{V_E N_F} \cdot [I_d_E]_{N_E V_E} = [I_d_F]_{V_F N_F} \cdot [f]_{N_E V_F} = \begin{pmatrix} -2 & 2 & -2 \\ 18 & 0 & -16 \end{pmatrix}
\]